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Abstract

Mild Cognitive Impairment (MCI) is a transitional stage between normal age-related cognitive 

decline and Alzheimer’s disease (AD). Here we introduce a hyperbolic space sparse coding 

method to predict impending decline of MCI patients to dementia using surface measures of 

ventricular enlargement. First, we compute diffeomorphic mappings between ventricular surfaces 

using a canonical hyperbolic parameter space with consistent boundary conditions and surface 

tensor-based morphometry is computed to measure local surface deformations. Second, ring-

shaped patches of TBM features are selected according to the geometric structure of the 

hyperbolic parameter space to initialize a dictionary. Sparse coding is then applied on the patch 

features to learn sparse codes and update the dictionary. Finally, we adopt max-pooling to reduce 

the feature dimensions and apply Adaboost to predict AD in MCI patients (N = 133) from the 

Alzheimer’s Disease Neuroimaging Initiative baseline dataset. Our work achieved an accuracy rate 

of 96.7% and outperformed some other morphometry measures. The hyperbolic space sparse 

coding method may offer a more sensitive tool to study AD and its early symptom.
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1 Introduction

Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and 

Alzheimer’s disease (AD). Many neuroimaging studies aim to identify abnormal anatomical 

or functional patterns, their association with cognitive decline, and evaluate the therapeutic 

efficacy of interventions in MCI. Structural magnetic resonance imaging (MRI) measures 
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have been a mainstay of AD imaging research, including whole-brain [12], entorhinal cortex 

[2], hippocampus [15] and ventricular enlargement [14].

Ventricular enlargement is a highly reproducible measure of AD progression, owing to the 

high contrast between the CSF and surrounding brain tissue on T1-weighted images. 

However, its concave shape, complex branching topology and the extreme narrowness of the 

inferior and posterior horns have made ventricular enlargement notoriously difficult for 

analysis. Recent research has demonstrated that subregional surface-based ventricular 

morphometry analysis may offer improved statistical power. For example, a variety of 

surface-based analysis techniques such as SPHARM [13] and radial distance [14] have been 

proposed to analyze ventricular morphometry abnormalities. To model a topologically 

complicated ventricular surface, Shi et al. [11] proposed to use the hyperbolic conformal 

geometry to build the canonical hyperbolic parameter space of ventricular surfaces. After 

introducing cuts on the ends of three horns, ventricular surfaces become genus-zero surfaces 

with multiple open boundaries, which may be equipped with Riemannian metrics that induce 

negative Gaussian curvature. Hyperbolic Ricci flow method was adopted to compute their 

hyperbolic conformal parameterizations and the resulting parameterizations have no 

singularities. After registration, tensor-based morphometry (TBM) [11] was computed on 

the entire ventricular surfaces and used for group difference study. Thus far, no attempt has 

been made to use the hyperbolic space based surface morphometry features for the prognosis 

of AD.

In this paper, we propose a new hyperbolic space sparse coding and dictionary learning 

framework, in which a Farthest point sampling with Breadth-first Search (FBS) algorithm is 

proposed to construct ring-shaped feature patches from hyperbolic space and patch based 

hyperbolic sparse coding algorithm is developed to reduce feature dimensions. Max-pooling 

[1] and Adaboost [10] are used for finalizing features and binary classification. We further 

validate our algorithms with AD prediction in MCI using ventricular surface TBM features. 

The major contributions of this paper are as follows. First, to the best of our knowledge, it is 

the first sparse coding framework which is designed on hyperbolic space. Second, the 

hyperbolic space sparse coding empowers the AD prediction accuracy through ventricular 

morphometry analysis. In our experiments with the ADNI data (N = 133), our ventricular 

morphometry system achieves 96.7% accuracy, 93.3% sensitivity, 100.0% specificity and 

outperforms other ventricular morphometric measures in predicting AD conversion for MCI 

patients.

2 Hyperbolic Space Sparse Coding

The major computational steps of the proposed system are illustrated in Fig. 1. The new 

method can be divided into two stages. In the first stage, we perform MRI scan 

segmentation, ventricular surface reconstruction, hyperbolic Ricci flow based surface 

registration and surface TBM statistic computation. In the second stage, we build ring-

shaped patches on the hyperbolic parameter space by FBS to initialize original dictionary, 

SCC based sparse coding and dictionary learning and max-pooling are performed for 

dimension reduction. Following that, Adaboost is adopted to predict future AD conversion, 

i.e. classification on MCI-converter group versus MCI-stable group.
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2.1 Hyperbolic Space and Surface Tenser-based Morphometry

We applied hyperbolic Ricci flow method [11] on ventricular surfaces and mapped them to 

the Poincaré disk with conformal mapping. On the Poincaré disk, we computed a set of 

consistent geodesics and projected them back to the original ventricular surface, termed as 

geodesic curve lifting. Further, we converted the Poincaré model to the Klein model where 

the ventricular surfaces are registered by the constrained harmonic map. The computation of 

canonical hyperbolic spaces for a left ventricular surface is shown in Fig. 2.

In Fig. 2, geodesic curve lifting used to construct a canonical hyperbolic space for 

ventricular surface registration. γ1, γ2, γ3 are some consistent anchor curves automatically 

located on the end points of each horn. On the parameter domain, τ1 is an arc on the circle 

which passes one endpoint of  and one endpoint of γ2 and is orthogonal to |z| = 1. The 

initial paths τ1 and τ2 can be inconsistent, but they have to connect consistent endpoints of 

γ1, γ2 and γ3, as to guarantee the consistency of the geodesic curve computation. After 

slicing the universal covering space along the geodesics, we get the canonical fundamental 

domain in the Poincaré disk, as shown in Fig. 2(b). All the boundary curves become 

geodesics. As the geodesics are unique, they are also consistent when we map them back to 

the surface in ℝ3. Furthermore, we convert the Poincaré model to the Klein model with the 

complex function [11]: z = 2z/1 + z̅z. It converts the canonical fundamental domains of the 

ventricular surfaces to a Euclidean octagon, as shown in Fig. 2 (c). Then we use the Klein 

disk as the canonical parameter space for the ventricular surface analysis.

After that, we computed the TBM features [11] and smooth them with the heat kernel 

method [3]. Suppose ϕ = S1 → S2 is a map from surface S1 to surface S2. The derivative 

map of ϕ is the linear map between the tangent spaces dϕ : TM(p) → TM(ϕ(p)), induced by 

the map ϕ, which also defines the Jacobian matrix of ϕ. The derivative map dϕ is 

approximated by the linear map from one face [υ1, υ2, υ3] to another one [w1, w2, w3]. 

First, we isometrically embed the triangles [υ1, υ2, υ3] and [w1, w2, w3] onto the Klein disk, 

the planar coordinates of the vertices, denotes by υi, wi, i= 1,2,3, which represent the 3D 

position of points υi, wi, i= 1,2,3. Then, the Jacobian matrix for the derivative map dϕ can be 

computed as J = dϕ = [w3 − w1, w2 − w1][υ3 − υ1, υ2 − υ1]−1.

Based on the derivative map J, the deformation tensors  was defined as TBM, 

which measures the amount of local area changes in a surface. As pointed out in [3], each 

step in the processing pipeline including MRI acquisition, surface registration, etc., are 

expected to introduce noise in the deformation measurement. To account for the noise 

effects, we apply the heat kernel smoothing algorithm proposed in [3] to increase the SNR in 

the TBM statistical features and boost the sensitivity of statistical analysis.

2.2 Ring-shaped Patch Selection

The hyperbolic space is different from the original Euclidean space, the structure is more 

complicated and demands more efforts for selecting patches based on its topological 

structure. The common rectangle patch construction cannot be directly applied to the 

hyperbolic space. Therefore, we proposed a Farthest point sampling with Breadth-first 

Search (FBS) on hyperbolic space to initialize original dictionary for sparse coding. Fig. 3 
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(right) is the visualization of patch selection on hyperbolic parameter domain. And Fig. 3 

(left) projects the selected patches on hyperbolic parameter domain back to the original 

ventricular surface, which still maintains the same topological structure as the parameter 

domain.

First, we randomly selected a point center on the hyperbolic space, denotes by px1, px1 ∈ Xr, 

where Xr is the set of all discrete vertices on hyperbolic space. Then, we find all points 

px1,i(i = 1, 2, …, n), where n is the maximum number of connected points connecting with 

the patch center px1. The procedure is called breadth-first search (BFS)[8], which is an 

algorithm for searching graph data structures. It starts at the tree root and explores the 

neighbor nodes first, before moving to the next level neighbors. Then, we used the same 

procedure to find all connected points with px1,i, which are px1,ij (j = 1, 2, ⋯, mi). Here, mi 

represents the maximum number of connected points with each specific point px1,i. The 

points px1,ij are connected with px1,i by using same procedure–BFS– between px1 and px1,i. 

Finally, we get a set Px1 as follows, which is a selected patch with patch center px1 and do 

not contain duplicate points.

(1)

Algorithm 1

Farthest point sampling with Breadth-first Search (FBS)

Input: Hyperbolic parameter space.

Output: A collect of different amount overlapped patches on topological structure.

1: Start with X′= {px1}, Xr denotes all discrete vertices on the hyperbolic space.

2: for t=1 to T do

3:   for r do determine sampling radius

4:     Find all connected components pxt,i of pxt by using one step BFS.

5:     Find set Pxt similar with Eq. 1 by using one step BFS.

6:     r = maxpx′ ∈ Xr dXr(px′, pxt)

7:     if r ≤ 10e−2 then STOP

8:     end if

9:     Find the farthest point from X′

10:       pxt+1 = arg maxpx′ ∈ Xr dr(px′, X′)

11:     Add pxt+1 to X′

12:   end for

13: end for

We can find all connected components of the center point px1 which are all in set px1. After 

that, we reconstruct the topological patches based on hyperbolic geometry and connected 

edges between the different points within px1 according to topological structure. We use Φ1 

denotes the first selected patch of the root (patch center) px1. Since we randomly select 

patches with different degree overlapped, we use radius r = maxpx′∈Xr dXr(px′, px1 to 

determine next patch’s root px2 position.
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In this way, we can find the second patch root px2 ∈ Xr with the farthest distance r of px1. 

We apply farthest point sampling [7], because the sampling principle is based on the idea of 

repeatedly placing the next sample point in the middle of the least known area of the 

sampling domain, which can guarantee the randomness of the patches selection. Here, d is 

hyperbolic distance in the Klein model. Given two points p and q, draw a straight line 

between them; the straight line intersects the unit circle at points a and b, so d is defined as 

follows:

(2)

where |aq| > |ap| and |bp| > |bq|.

Then, we can calculate:

(3)

where X′ denotes the set of selected patch centers. Then, we add px2 in X′ and iterate the 

patch selection procedure T = 2000 times, because it will cover all vertexes according to the 

experimental results. The details of FBS are summarized in Algorithm 1.

2.3 Sparse Coding and Dictionary Learning

For our problem, the dimension of surface-based features is usually much larger than the 

number of subjects, e.g., we have approximate 150,000 features from each side of ventricle 

surfaces on each subject. Therefore, we used the technique of dictionary learning [6] with 

pooling to reduce the dimension before prediction. The problem statement of dictionary 

learning is described as below.

Given a finite training set of signals X = (x1, x2, ⋯, xn) in Rn×m image patches, each image 

patch xi ∈ Rm, i= 1,2, ⋯, n, where m is the dimension of image patch. Then, we can 

incorporate the idea of patch features into the following optimization problem for each patch 

xi:

(4)

Specifically, suppose there are t atoms dj ∈ Rm, j = 1,2, ⋯, t, where the number of atoms is 

much smaller than n (the number of image patches) but larger than m (the dimension of the 

image patches). xi can be represented by . In this way, the m-dimensional 

vector xi is represented by an t-dimensional vector zi= (zi,1,⋯, zi,t)T, which means the 

learned feature vector zi is a sparse vector. In Eq. 4, where λ is the regularization parameter, 
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‖·‖ is the standard Euclidean norm and  and D = (d1, d2, ⋯, dt) ∈ Rt×m is 

the dictionary, each column representing a basis vector.

To prevent an arbitrary scaling of the sparse codes, the columns di are constrained by 

. Thus, the problem of dictionary learning can 

be rewritten as a matrix factorization problem:

(5)

It is a convex problem when either D or Z is fixed. When the dictionary D is fixed, solving 

each sparse code zi is a Lasso problem. Otherwise, when the Z are fixed, it will become a 

quadratic problem, which is relative time consuming. Thus, we choose the SCC algorithm 

[6], because it can dramatically reduce the computational cost of the sparse coding while 

keeping a comparable performance.

3 Dataset of Experiments and Classification Results

We selected 133 subjects from the MCI group in the ADNI baseline dataset [11]. These 

subjects were chosen on the basis of having at least 36 months of longitudinal data, which 

consisting of 71 subjects who developed AD within 36 months (MCIc) group and 62 

subjects who did not convert to AD (MCIs) group. All subjects underwent thorough clinical 

and cognitive assessment at the time of aquisition, including Mini-Mental State Examination 

(MMSE), Alzheimer’s disease assessment scale-Cognitive (ADAS-Cog). The statistics with 

matched gender, education, age, and MMSE are shown in Table 1.

In this work, we employed the Adaboost [10] to do the binary classification and distinguish 

different individuals in different groups. Accuracy (ACC), Sensitivity (SEN), Specificity 

(SPE), Positive predictive value (PPV) and Negative predictive value (NPV) were computed 

to evaluate classification results [4]. We also computed the area-under-the-curve (AUC) of 

the receiver operating characteristic (ROC) [4]. A five-fold cross-validation was adopted to 

estimate classification accuracy. For comparison purposes, we computed ventricular 

volumes and surface areas within the MNI space on each side of the brain hemisphere [9], 

which are viewed as powerful MRI biomarker that has been widely-used in studies of AD. 

And we also compared FBS with a ventricular surface shape method in [5] (Shape), which 

built an automatic shape modeling method to generate comparable meshes of all ventricles. 

The deformation based morphometry model were employed with repeated permutation tests 

and then used as geometry features. Support vector machine was adopted as the classifier. 

With our ventricle surface registration results, we followed Shape work for selecting 

biomarkers and classification on the same dataset with our new algorithm. We tested FBS, 

Shape, volume and area on left, right and whole ventricle, respectively. Table 2 shows 

classification performance in one experiment featuring four methods.

Throughout all the experimental results, we can find that the best accuracy (96.7%), the best 

sensitivity (93.3%), the best specificity (100%), the best positive position value (100%) and 
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negative position value (88.9%) were achieved when we use TBM features on ventricle 

hyperbolic space on both sides (whole) for training and testing. The comparison also shows 

that our new framework selected better features and made better and more meaningful 

classification results. In Figure 4, we also generated ROC and computed AUC measures in 

four experiments. The FBS algorithm with whole ventricle TBM features achieved best 

AUC (0.957). The comparison demonstrated that our proposed algorithm may be useful for 

AD diagnosis and prognosis research. In the future, we will do more in depth comparisons 

against other shape analysis modules, such as SPHARM-PDM and radio distance, to further 

improve our algorithm efficiency and accuracy.
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Fig. 1. 
The major processing steps in the proposed framework.
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Fig. 2. 
Modeling ventricular surface with hyperbolic geometry. (a) shows three identified open 

boundaries, γ1, γ2, γ3, on the ends of three horns. After that, ventricular surfaces can be 

conformally mapped to the hyperbolic space. (b)(c) show the hyperbolic parameter space, 

where (b) is the Poincaré disk model and (c) is the Klein model.
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Fig. 3. 
Visualization of computed image patches on ventricle surfaces and hyperbolic geometry, 

respectively. The zoom-in pictures show some overlapping areas between image patches.
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Fig. 4. 
Classification performance comparison with ROC curves and AUC measures.
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